
 SDR++
A modular cross-platform SDR utility

© Alexandre Rouma 2025 (CC BY-NC-ND)

https://www.sdrpp.org/

$ whoami

2011 2017 2019 2020

C/C++ SDR (use) SDR (dev) SDR++

2021

Amateur
Radio License

2002

Education

BSc. Engineering (2020 - 2023)

PhD. Electrical Engineering (2025 - TBD)

MSc. Aerospace Engineering (2023 - 2025)

Hello
World!

What is SDR++?

Wide Hardware
Support

Fully Modular

Wide OS Support

RX only (for now)

Multi-VFO

Fully custom DSP

GPLv3 License

A brief history segment…

June 2020 July 2020

Basic Proof of Concept

Layout inspired by SDR#

Waterfall code rewritten

First public release!

A brief history segment…

August 2020

Module system

Band plans

October 2020

Source system

Last alpha release!

The SDR++ Signal Path

Source Decimation* Correction*

VFO 1 VFO 2 VFO 3 VFO N…

FFT

Waterfall

Module 1

Inversion*

Module 2 Module M…

PreprocInput

Channelization

Processing

Sink 1 Sink J…

* Optional

Output

Two common implementations.

Device Handling

Full Abstraction Basic Abstraction

Samplerate

Frequency

Port

Gains

Bandwidth Filters

Start

Bias-T

GUI +

Stop

Most common SDR device handling scheme due to libraries like SoapySDR.

Powerful and avoids needing hardware but complex to implement (well) and inflexible.

Device Handling - Full Abstraction

Source:
github.com/pothosware/SoapySDR/wiki

https://github.com/pothosware/SoapySDR/wiki

One of the earliest SDR device handling scheme.

Flexible but no programmatic configuration and requires having the hardware.

Device Handling - Basic Abstraction with GUI

ExtIO Standard

Winrad (2006)

HDSDR (2009)

Win32 ONLY!

Software-specific API

SDRsharp (2012)

SDRangel (2015)

SDR++ (2020)

Device Handling - Basic Abstraction with GUI

Source modules must implement start and stop while tune and menu are optional.

Enough to implement support for any SDR hardware, protocol or recording format.

Device Handling - SDR++

Source Module

Mandatory Optional

start()

stop()

select() tune(freq)

deselect() menu()

Sample
Stream

Remote usage of SDR hardware is often necessary.

The server system transports samples, commands and GUI elements.

Device Handling - SDR++ Server

Server

Source Module

Packet Encoding / Decoding

Sample Comp. GUI Server

Client

Source Menu

Packet Encoding / Decoding

Sample Dec. GUI Client

TCP

Preprocessing

Streams move samples. They encapsulate two buffers, IO and signaling functions.

Using fixed size swappable buffers is fast but uses more memory.

Digital Signal Processing - Streams

Stream

Buffers

readBuf[L]

writeBuf[L]

Input / Output

swap(N<=L)

read()

flush()

Signaling

stopReader()

stopWriter()

Blocks encapsulate a processing function, worker thread and streams.

Multiple blocks can be combined in hierarchical blocks or chains.

Digital Signal Processing - Blocks

Block

Worker Thread

process()
Sample
Streams

start() stop()

Hierarchical Block

Block

Block Block

Block

Chains

Block*

H.Block*

Block*

* Bypassable

Pre-processing is implemented as a chain of DSP blocks.

Decimation is placed first to minimize the load on subsequent blocks.

Pre-processing

Pre-processing

Chain

2n Decimation* Spectral Inversion* IQ Correction*

* Bypassable

The raw IQ is frequency-shifted, then resampled and filtered.

Single thread to maximize efficiency. Minimum O.O.B. attenuation of 100dB.

Channelization

VFO

Frequency Shift

Resampler

2n Decimation Polyphase Resampling Filter

Modules are Dynamic Libraries that link themselves to the SDR++ core library.

Makes modularity trivial but means that ABI compatibility is easily broken.

Modules - Dynamic Library

Module DL

Mandatory Optional

_CREATE_INSTANCE_()

_DELETE_INSTANCE_()

INIT()

END()
INFO
Struct

SDR++
Core
DL

Module instances are referred by name and created by the module library.

Module instances may access any public object within the core.

Modules - Instance

Module Instance

Constructor(name)

Destructor()

postInit()

enable()

disable()

isEnabled()

Sink providers register themselves by name.

One provider can be selected to create the sink type for each audio stream.

Sinks - Providers

Sink Provider

create()

delete()

Sink Manager

register(name)

unregister()

Sink instances are abstracted similarly to sources.

Very flexible and target agnostic.

Sinks - Instances

Sink

Mandatory Optional

start()

stop()
menu()Sample

Stream

 SDR++
It’s demo time!

What’s next? Things that WON’T change

SDR++ 1.0 did a lot of things right.

If it ain’t broke, don’t fix it!

GUI Layout

General Workflow Hardware Support

OS Support

What’s next?

Much of the software has to change in SDR++ 2.0.

Near complete rewrite using lessons learned from 1.0.

Now Soon™

Dear ImGUI Custom GUI library

Single Input / Multiple Output Multiple Input / Multiple Output

DSP Library Rewrite

Receive Only Receive / Transmit

● Bob Logan
● Christian Häusler
● Croccydile
● Dale L Puckett (K0HYD)
● Daniele D'Agnelli
● David Taylor (GM8ARV)
● D. Jones
● Dexruus
● EB3FRN
● Eric Johnson
● Ernest Murphy (NH7L)
● Flinger Films
● Frank Werner (HB9FXQ)

Would not be possible without the Patreon supporters!
● Paul Maine
● Peter Betz
● Scanner School
● Scott Palmer
● SignalsEverywhere
● Syne Ardwin (WI9SYN)
● W4IPA
● William Arcand (W1WRA)
● William Pitchford
● Yves Rougy
● Zipper

● gringogrigio
● Jandro
● Jeff Moe
● Joe Cupano
● KD1SQ
● Kezza
● Krys Kamieniecki
● Lee Donaghy
● Lee KD1SQ
● .lozenge. (Hank Hill)
● Martin Herren (HB9FXX)
● ON4MU
● Passion-Radio.com

And many more!patreon.com/ryzerth

https://www.patreon.com/c/ryzerth
http://patreon.com/ryzerth

Slides available at www.sdrpp.org/fosdem25.pdf

 SDR++
Thank you for your attention!

https://www.sdrpp.org/fosdem25.pdf

